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SUHHARY

The NASA Lewis Research Center's Ceramic Technology Program is focused on

aerospace propulsion and power needs. Thus, emphasis is on hlgh-temperature

ceramics and their structural and environmental durability and reliability.

The program is interdisciplinary in nature with major emphasis on materials

and processing, but with significant efforts in design methodology and life

prediction.

INTRODUCTION

Structural ceramics have been under nearly continuous development for

various heat engine applications since the early 1970's (refs. 1 to 4). These

efforts have been sustained by the unique properties that ceramics offer in

the areas of high-temperature strength, environmental resistance, and low

density, and the large benefits in system efficiency and performance that can

result. The results of recent studies of potential ceramic applications in

small, aeropropulsion engines (ref. 5) have revealed that substantial benefits

are possible over current engine technology. As shown in figure i, small

gains can be obtained via improved aerodynamic and cycle efficiency. Much

larger benefits are possible by going to a regenerated cycle or by going to an

uncooled hot section. Both of these approaches require ceramics (i.e., a

ceramic regenerator for weight considerations and ceramic hot section

components to overcome the need for hot section component cooling). An engine

that uses both a regenerated cycle and an uncooled hot section would achieve

optimum fuel efficiency.

But the promise of ceramics has not been realized because of their brittle

nature, which results in high sensitivity to microscopic flaws and catastrophic

fracture behavior. This has translated into low reliability for ceramic

components and thus limited application in engines. For structural ceramics

to successfully make inroads into the terrestrial heat engine market, further

advances are necessary in net shape fabrication of components with greater

reliability and lower cost (fig. 2). The cost constraint as well as technical

constraints currently dictate use of monolithic or possibly particulate or

whisker-toughened ceramics. Improvements in properties such as toughness,

strength, lubrlclty, and durability may also be needed for specific

applications. These advances in technology will lead to very limited use of

ceramics in noncritical applications in aerospace engines. For critical
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aerospace applications, an additional requirement is that the ceramics display
markedly improved toughness and noncatastrophic (i.e., graceful) fracture.

STRUCTURAL CERAMICS APPLICATIONS

The engines shown in figure 3 contain ceramic components that were

developed in the Advanced Gas Turbine (AGT) Development Project. This program

was funded by the U.S. Department of Energy and managed by the NASA Lewis

Research Center (refs. 6 and 7). These all-ceramic hot gas flowpath engines

are being considered as alternatives to conventional piston engines in

automobiles. Complex structural ceramic components were fabricated and tested,

and improvements in the areas of design methodology and life prediction were

achieved. The technology from this program (which was completed in 1987) and

its continuation, the Advanced Turbine Technology Applications Program (ATTAP),

will help make it possible for ceramics to ultimately be used in automotive

engines and provide part of the technology base for some aerospace

applications.

CERAMIC TECHNOLOGY PROGRAM

The Ceramic Technology Program at NASA Lewis is focused on aerospace

propulsion and power needs. Thus, emphasis is on high-temperature use of
ceramics and on their structural and environmental durability and

reliability. The objective of our Ceramic Technology Program is to identify

and develop ceramics and ceramic composites with strength, toughness,

reliability, and durability sufficient for use at temperatures to 1650 °C

(3000 °F) and above in future advanced aerospace propulsion and power

systems. The program is interdisciplinary, with major emphasis on materials

and processing, but with significant efforts in design methodology and life

prediction:

(i) Materials and processing

(a) Reliable, tough ceramics

(b) Fiber-reinforced ceramics

(c) Advanced ceramic fibers

(d) Wear-resistant and low friction coatings

(2) Design methodology

(a) Brittle materials design code

(b) Friction and wear data

(3) Life prediction

(a) Environmental effects

(b) Nondestructive evaluation

(c) Fracture and fatigue

(d) Time-dependent behavior

About 35 researchers in the Materials and Structures Divisions are

involved in the project. Strong interactions between researchers involved in
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materials efforts and nondestructive evaluation (NDE), corrosion, fracture,
and design methodology have led to successful collaborations (refs. 8 to 13).

APPROACHESTOCERAMICRELIABILITY

Twobasic forms of reliability can be defined for ceramics. The first is
a statistical reliability, as illustrated in figure 4. Ceramics typically
display a broad distribution of strengths. In the inspection approach to
reliability, we would separate unacceptable parts by NDEand proof testing and
would reject them. A more efficient and cost effective approach lies in
improved processing that increases strength and yields no defective parts.

Wedefine the second form of reliability as functional reliability because
it relates to how well a componentperforms its function during system assembly
and service. Thus, factors such as fracture toughness, impact resistance, and
failure mode(graceful versus catastrophic) need to be considered. Specific
approaches to improved functional reliability include the addition of
particulate and whisker phases which can improve fracture toughness, and the
addition of continuous fibers which can both improve toughness and provide a
noncatastrophic failure mechanism. This brings us into the realm of engineered
microstructures (i.e., composites).

MONOLITHICANDTOUGHENEDCERAMICS

Current NASALewis materials, design, and life prediction research is
focused on SiC and Si3N4, since these materials offer the desired combination
of high-temperature strength, thermal shock resistance, and environmental
durability. Weare concluding efforts on monolithic SiC and Si3N4 reliability
improvement. Future efforts are being focused on determining the potential of
these materials for use in the 1300 to 1600 °C range. This requires

improvements in strength and toughness and an understanding of how these

improvements translate into use potential. These efforts are synergistic with

our effort in fiber-reinforced ceramics, where our major emphasis is on SiC

and Si3N 4 materials (for matrix and fiber reinforcement applications).

Some recent progress at NASA Lewis in improving the strength of monolithic

silicon carbide (ref. 14) is illustrated in figure 5. Materials fabricated by

dry pressing or slurry pressing, followed by sintering at 2200 °C for 30 min

have four-point flexural strengths of about 345 and 414 MPa, respectively.

Hot-isostatic pressing tantalum-encapsulated, green, slurry-pressed specimens

at 1900 °C for 30 min under 138 MPa argon pressure improves strength to about

552 MPa while achieving the same density. This densification at a much lower

temperature yields a much finer grain size and a shift in the strength-limiting

flaw from internal defects, such as pores and agglomerates, to surface

machining defects. Improvements are being sought to reduce sensitivity to

surface flaws. Annealing in air has proven _uccessful, and improved fracture

toughness from the addition of particulates or whiskers is expected to be
beneficial.

In the area of monolithic silicon nitride processing, an improved NASA 6Y

(6 wt % Y203 ) sintered Si3N 4 composition was realized by iterative utilization

of conventional x-radiography to characterize structural (density) uniformity

as affected by systematic changes in powder processing and sintering parameters
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(ref. 15). As shown in figure 6, four-point flexural strength was improved

56 percent, and the standard deviation was reduced by more than a factor of

three. Correlated with these improvements were improved microstructures and a

change in critical flaw character from processing flaws such as voids to large

grains, as shown by the fractographs at the lower left and right of figure 6,

respectively.

NASA has supported major contract research efforts to improve the

statistical reliability and strength of silicon nitride (Garrett Ceramic

Components Division) and silicon carbide (Ford Motor Co.) via improved

processing centered about injection molding. Both efforts have made good

progress toward the goals of 100-percent improvement in Weibull modulus and

20-percent improvement in strength (refs. 14 and 16). The effort at Garrett

is essentially complete. One Garrett accomplishment, as shown in figure 7,

was the development of material GN-10, which appears to have significantly

advanced the state of the art for Si3N 4 in terms of both room- and

elevated-temperature strength.

An interdisciplinary toughened ceramics life prediction project has been

initiated at NASA Lewis. The objective of this research is to understand the

room- and high-temperature behavior of toughened ceramics, especially SiC

whisker-toughened Si3N4, as the basis for developing a life prediction

methodology. A major goal is to determine material behavior as a function of

time, temperature, and whisker content. A second major objective is to

understand the relationship between microstructure and mechanical behavior.

These results will be used in materials development and design methodology

development. Resultant design codes will be verified.

Fiber-Reinforced Ceramics

Improved strength, toughness, and reliability can be achieved by

incorporating continuous ceramic fibers into a ceramic matrix. Reinforcing

with ceramic fibers having a modulus and ultimate strength greater than the

monolithic ceramic used as the matrix material yields ceramic composites with

greater stiffness and greater strength at first matrix cracking. If

small-dlameter fibers are used, matrix crack propagation can be delayed by the

bridging mechanism depicted in figure 8. This results in matrix failure for

the composite at a stress and strain level higher than for the monolithic

ceramic. If the flber-matrlx interfacial bonding is optimum, matrix cracks

propagate around the fibers and not through them. Once matrix cracks start to

form, they occur at a regular spacing. The ceramic is then held together by

the load carrying capacity of the fibers until they begin to fracture in a

statistical manner. The net result for a tough ceramic composite is that a

metallike stress-strain curve is displayed with first-matrix cracking stress

corresponding to the yield stress of metals and fiber fracture corresponding

to the ultimate strength. Thus, fiber-reinforced ceramics fail in a graceful

manner, rather than catastrophically.

The processing of fiber-reinforced composites is more difficult than the

processing of monolithic ceramics. Also, available fibers for high-temperature

(1400 °C) ceramic matrix composites are limited, and the proper fiber-matrix

bond must be maintained in fabrication as well as during the life of the

composite. Too strong a bond yields a loss in toughness and a reversion to
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monolithic ceramic behavior, while too weak a bond yields loss in stiffness,

strength, and toughness.

The focus of current NASA Lewis research in fiber-reinforced ceramics

(FRC) is on the development of fabrication approaches that yield good matrix

properties and can be carried out with minimal degradation of fiber strength.

Four approaches that are being pursued are listed as follows:

Si powder + heat + N2 gas

SiC polymer + heat

C polymer + heat + Si gas

AI-O sol gel + heat

Si3N 4
SiC

SiC

A1203

Each process has a specific advantage. The reaction-bonded Si3N 4 matrix

has excellent strength, the use of SiC- or C-yielding polymers can provide

low-cost processing (ref. 17) or tailorable matrix capability, and an AI203

matrix (with oxide fiber reinforcement) would provide excellent oxidation

resistance. Extension of the capability of FRC via development of advanced

fibers and fiber coatings is a second area of focus. Effort is focused on

identifying and developing high-strength fibers (ref. 18), especially those

with the potential for use at temperatures greater than 1650 °C (3000 °F).

Environmental protection through coatings and control of the fiber-matrix bond

are also being evaluated. The third area of focus is assessment of FRC

capability to perform in applications such as NASP and rocket propulsion

systems. These efforts thus focus on key issues associated with each

application, such as process scale-up to enable component fabrication,

compatibility with the environment, and resistance to thermal shock.

The fabrication sequence, microstructure, and mechanical properties of a

strong and tough SiC fiber-reinforced, reaction-bonded silicon nitride

composite recently developed at NASA Lewis are summarized in figure 9. Silicon

and SiC fiber monotapes are interleaved and subjected to a mild hot-pressing

step to burn out the binder and provide some green strength (ref. 19). The

composite is then nitrided to convert the silicon to Si3N 4. The resultant

composite microstructure contains high levels of porosity, particularly

between fibers. In four-point flexural testing, the composite exhibits a

first matrix cracking strength comparable to typical monolithic reaction-bonded

silicon nitride (RBSN) even though the matrix density at 2.0 g/cm 3 is far

lower than that of monolithic RBSN. The ultimate strength of the composite is

more than twice that of a typical RBSN at both 23 and 40 percent fiber loading.

Further, the high-temperature strength of this SiC/RBSN composite exceeds that

of various commercial ceramics. In figure i0, four-point bend strengths for

the NASA Lewis SiC/RBSN composite at room temperature, 1200 °C (2200 °F), and

1400 °C (2550 °F) are compared with data for the following commercially

available ceramic materials: fully dense, hot-pressed Si3N4, reaction-bonded

Si3N4, and SEP SiC/SiC composite (one-dimensional). At elevated temperature,

23 vol % SiC/RBSN is stronger than both monolithics and more than twice as

strong as the SEP SiC/SiC composite.

Tensile stress-strain data and fracture behavior of 30 vol % SiC/RBSN

composites (ref. 20) are illustrated in figure ii. An additional strain

occurs after matrix fracture at about 0.12 percent strain. The stress at

failure is much higher than for first matrix cracking. The fracture surface

exhibits the moderate fiber pullout required for achieving a strong, tough

ceramic matrix composite. It is expected that with the development of high
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strength, smaller diameter SiC fibers, the fracture properties of the SiC/RBSN
will improve significantly.

An example of studies aimed at improved ceramic fibers is a recent

in-house study of post-processing of Nicalon SiC fibers (ref. 21). This

research involved high-temperature/high-pressure treatments of Nicalon in an

attempt to determine if the fiber properties could be improved or stabilized.

Results are summarized in figure 12. Treatment under 1360 arm argon results

in about a 300 °C increase in the maximum exposure temperature (for avoiding

excessive strength degradation). This effect is transitory in nature. Thus,

exposure to high temperature at 1 atm after pressure treatment gives the same

results as exposure of a virgin fiber. However, if high-temperature exposure

is necessary only for processing of the composite, the pressure treatment

approach may have significant merit.

CONCLUDING REMARKS

For ceramics to achieve their promise in advanced aerospace applications,

reliable and economical fabrication processes must be developed for

monolithic, whisker-toughened, and fiber-reinforced ceramics and their

constituents. In addition, a basic understanding of the materials science of

ceramics is required for the development of processing, design, and life

prediction methodologies that will enable ceramics to be used. NASA Lewis is

actively pursuing all of these goals through our integrated multidisciplinary

Ceramics Technology Program.
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Figure 3. - All-ceramic hot gas flowpath engines are being considered as
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